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Abstract. A previous MHD theory for the density jump at the Earth's bow shock, which

assumed the Alfven (MA) and sonic (M,) Mach numbers are both >> 1, is reanalyzed

and generalized. It is shown that the MHHD jump equation can be analytically solved much

more directly using perturbation theory, with the ordering determined by MA and M,, and

that the first-order perturbation solution is identical to the solution found in the earlier

theory. The second-order perturbation solution is calculated, whereas the earlier approach

cannot be used to obtain it. The second-order terms generally are important over most of

the range of MA and M, in the solar wind when the angle 0 between the normal to the bow

shock and magnetic field is not close to 00 or 180 ° (the solutions are symmetric about 90°).

This new perturbation solution is generally accurate under most solar wind conditions at 1

AU, with the exception of low Mach numbers when O is close to 90 °. In this exceptional

case the new solution does not improve on the first-order solutions obtained earlier, and the

predicted density ratio can vary by 10-20% from the exact numerical MHD solutions. For

0 --_ 900 another perturbation solution is derived that predicts the density ratio much more

accurately. This second solution is typically accurate for quasi-perpendicular conditions.

Taken together, these two analytical solutions are generally accurate for the Earth's bow

shock, except in the rare circumstance that MA < 2. MHD and gasdynamic simulations

have produced empirical models in which the shock's standoff distance a, is linearly related

to the density jump ratio X at the subsolar point. Using an empirical relationship between

a, and X obtained from MI-ID simulations, a, values predicted using the MHD solutions

for X are compared with the predictions of phenomenological models commonly used for

modeling observational data, and with the predictions of a modified phenomenological model

proposed recently. The similarities and differences between these results are illustrated

using plots of X and a, predicted for the Earth's bow shock. The plots show that the

new analytic solutions agree very well with the exact numerical MHD solutions and that

these MHD solutions should replace the the corresponding phenomenological relations in

comparisons with data. Furthermore, significant differences exist between the standoff

distances predicted at low MA using the MHD models versus those predicted by the new

modified phenomenological model. These differences should be amenable to observational

testing.

r

1. Introduction

Research on the position of the Earth's bow shock,

which has been pursued for the last 3 decades, has pre-

dominately focused on gasdynamic and quasi-gasdynamic

analysis [e.g., Spreiter el al., 1966; Fairfield, 1971;

Formisano et al., 1971; Holzer and Slavin, 1978; Siavin

el al., 1983; Farris et al., 1991]. There are strong mo-

tivations, however, for further developing an MHD the-

ory of the shock's location [Cairns and Grabbe, 1994],

since the bow shock is a magnetosonic shock wave and

the solar wind interacting with the Earth's magneto-

sphere is a magnetized plasma. Robust MHD theories
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show dependence on the Alfven Mach number M_, the

sonic Mach number M,, and the angle 0 between the

magnetic field and shock normal vectors. In contrast,

gasdynamic theory is a function of the lone Mach num-

ber M, (phenomenological substitutions of MA or M,n,

for M, are often made to model the Earth bow shock in

variants on gasdynamic theory) and its validity is gen-

erally limited to M_ >> M, 2 >> 1. (Here Mm, is the

0-dependent magnetosonic Mach number.) Our focus is

on developing an accurate model of the solar wind in-

teraction for low MA and M,, which requires an MHD

analysis.

An earlier effort at a theoretical analysis of the bow

shock using MHD theory was pursued by ghuang and

Russell [1981]. They showed that the jump conditions

lead to a complicated cubic equation for the density

jump ratio as a function of the magnetic field compo-
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nents and temperature in the solar wind. Their pa-
per presents an involved method for solving that equa-

tion for large M.4 and M, in which the nonlinear alge-

braic equation for the density jump ratio X = p,_/p_,

is converted into 30 linear equations (pj_ and pbs are
the mass density of the upstream solar wind and im-

mediately downstream of the bow shock, respectively).

These equations were solved to obtain analytical solu-
tions to first order in the Mach numbers, both of which
were assumed to be >> 1.

There is interest in the density jump ratio X for two
reasons. One is intrinsic, since spacecraft experiments

measure X directly at the bow shock. The other is its

relationship to the standoff distance of the bow shock.

Empirical analysis has shown the magnetosheath thick-

ness (the bow shock standoff distance less the known

distance to the magnetopause) is proportional to X, so

knowing X allows predictions for the standoff distance

[Spreiter et al., 1966; Cairns and Grabbe, 1994; Cairns

and Lyon, 1995]. The difficulty with using the Zhuang-
Russell analytical solution for comparison with data on

the bow shock is that when MA or M_ is sufficiently

below 10, their solution generally underestimates X.

Our analysis indicates that the underestimation can be

significant for all 0 except for 0 relatively close to 0.

This inaccuracy degrades the usefulness of the theory
in modeling most shocks which are observed at these
lower Math numbers.

Historically the trend in investigating the bow shock

position has been to utilize gasdynamic results for com-
parison with the observed shock standoff distances, al-

though efforts were made to introduce some MHD con-

cepts into the gasdynamic model. Spreiter and Rizzi

[1974] present MHD solutions for solar wind magnetic

fields aligned with the flow (0 = 0), in which case the
MHD equations reduce to a set of equations directly
analogous to the gasdynamic equations except for a

modified equation of state. Spreiter and Stahara [1980]
introduced a global quasi-gasdynamic model oriented
toward its usability for comparison with data in which

the flow is determined by solving the conservation equa-

tions with the magnetic field terms neglected, and the

magnetic field is then determined from the gasdynamic

flow using the magnetic induction equation.

Russell [1985] argued how the difficulty of comparing
with MHD theory made the quasi-gasdynamic model

more usable for data comparison and that the single

Mach number in the quasi-gasdynamic theory (which

is the sonic Mach number M, in the gasdynamic equa-

tions) should be replaced with the magnetosonic Mach
number M, n0, as was done previously by Formisano

et al. [1971] when modeling shock locations. This
phenomenological model, in which Mm, is substituted

for M_ in the gasdynamic equation obtained for a, by

Spreiter et al. [1966], has often been used to analyze

spacecraft data for the Earth bow shock [e.g. Farris et
al., 1991]. After comparing some observed bow shock

crossings with gasdynamic theory, Slavin el al. [1983]

state that there appears to be no theoretical support

for this substitution, and that the arguments advanced
for the substitution appear valid only under conditiom

of strong IMF intensity or low MA. Cairns and Grabb_

[1994] demonstrate the lack of theoretical foundation
for this substitution. Russell and Zhang [1992] and

Cairns et al. [1995] have shown that this phenomeno-

logical model is observationally inadequate at low MA

and Mms < 3, thereby indicating a need for further

developing the theory at these low Mach numbers. Re-

cently, Farris and Russell [1994] proposed a modified
phenomenological model for a_ for low MA.

These developments and the continued reliance on

phenomenological models for data comparison clearly

indicate a need for further developing MHD theory,
especially at low Mach numbers. Cairns and Grabb_

[1994] considered the obvious MHD generalization of

Spreiter et al.'s [1966] gasdynamic theory for a,: lin-

early relating the MHD density jump ratio X (rather
than the gasdynamic X) to the magnetosheath thick-

ness. They then showed that the resulting theory for

a, reduces to the phenomenological Mm, model only

under restricted circumstances which are generally no1

met in the solar wind. Their theory shows direct de-

pendences on MA, M,, O, and specific heat ratio "_
that cannot be subsumed into M,n_ alone, and reduce_

to the gasdynamic theory when MA >> Ma >> 1

Subsequently, Cairns and Lyon [1995] presented three-

dimensional ideal MHD simulations for a > 45 °, which
show that the magnetosheath thickness is indeed prc_

portional to the MHD value of X for MA > 1.5. Thk,

was utilized to extend the MHD model for a0 developed

by Cairns and Grabbe [1994].

The present paper markedly extends the Cairns ana

Grabbe [1994] MHD analysis by obtaining analytical so-

lutions of X for all 0, linking them with the MtID sim-

ulations of Cairns and Lyon [1995], and comparing the

predictions with the modified phenomenological model
of Farris and Russell [1994]. In section 2 it will be

shown that the MHD jump conditions can be analyt-
ically solved, in a much more direct fashion than wa_

done earlier, by using perturbation theory. The solu-

tion given by Zhuang and Russell [1981] is the same as

the first-order perturbative solution which is obtained

much more directly. Furthermore, with perturbation

theory the second-order (and even higher) terms in the
solution are obtained, whereas they cannot be in the

approach used by Zhuang and Russell. Two solutions

accurate to second order are obtained for separate over-
lapping ranges of 0: approximately 0* to 75 ° and 50 o

to 90 o (with symmetry about 90°). The second- and

higher-order terms are determined to be important for

0 not close to 0° except when both MA and Mj are

>> 1. Taken together, these two analytical solutions

are generally accurate to within a few percent under
most conditions that exist in the solar wind at 1 AU.

Section 3 compares the low-Mach number predictions

from both the new analytic theory, and from magne-
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tosonic phenomenological models that have been used

in spacecraft data analysis, against the precise MHD re-

sults. These comparisons are made between the shock
standoff distances predicted by selected empirical mod-

els. Section 4 summarizes the major conclusions of this

paper.

2. Density and Velocity Jump

The Rankine-Hugoniot relations for the conservation

of mass, energy, momentum, and charge density, along

with Maxwell's equations, constrain the changes in fluid
and electromagnetic variables across the shock. Zhuang

and Russell [1981] used these relations to derive a cu-

bic equation for the upstream to downstream density
ratio X = P,w/P_, = U_,/U,w (sw denotes the solar
wind upstream and bs the downstream side of the bow

shock, while the symbols U denote fluid speeds). This

equation has some differences from n similar cubic de-

rived for shock waves using the Vlasov (rather than a

fluid) approach of Tidrnan and Krall [1971]. The Vlasov
derivation assumed Maxwellian electron and ion distri-

butions, which are probably not valid near the Earth's
bow shock. The fluid equation can be expressed in

the following streamlined form [see Cairns and Grabbe,

1994]:
X s + CaX _ + CbX + C, = 0 (1)

where the coefficients are

+ 3, + (3' + 2) cos 2 0C. {
(3' + 1)M_ (2)IT-,-)

2

+(3' + llM_ }

1

Cb -- (3' + 1)MI {3'(1+ cos 20) - 2 (3)

0r(3, + 1) 4
+co_2 ,-_a2 + _-_21}

cos_ O 2cos2 0.

Cc = -(3'+1)M4 )[(3'-1)+---_,2 ] (4)

where MA = U,w/UA and M, = U,w/c, are the Alfven

and sonic Mach numbers, 0 is the angle between the

shock normal and the solar wind magnetic field B, and

3' is the adiabatic constant. Here U,,_ is the solar wind

speed, UA is the Alfven speed, and c, the ion acoustic

speed. The analysis by Cairns and Grabbe [1994] will be

extended by finding analytical solutions over the entire

range of 0.

While (1) has three solutions for any set of plasma
parameters, only one corresponds to a solution for the

Earth's bow shock. For 0 dose to 0', the other two so-

lutions correspond to "switch-on" shocks (X _ 1/M_),

while for 0 in the vicinity of 900 the other two solutions

represent an unphysical "negative-density" shock (mass

density of opposite sign on the two sides of the shock)

and an unphysical "reverse" shock (X < 0.25). Zhuang

and Russell [1981] used the cubic formula to analyti-

cally solve (I) for the bow shock under the restriction
that MA and M, >> 1. Unfortunately, that approach

ties the solution up into a Gordian knot. To unravel

this knot, they broke the cubic solution into 30 linear

equations, which were solved simultaneously for large
MA and Air,.

A better approach for finding analytical solutions

avoids using the cubic formula altogether. Since the two
Mach numbers are both > 1 for Earth's bow shock, a

direct approach is to solve the equation using perturba-

tion theory [e.g., Nayfeh, 1993], with the perturbation

parameters being 1/M_ and l/M2,. These are two dif-
ferent perturbation parameters, but they will be taken

as the same order e in our analysis since they are ap-

proximately of the same order in the solar wind. We

will denote the order given by these two parameters as

e. Thus the ordered solution we are seeking takes the
form:

X = xo + exl + _z_ + ... (5)

The coefficient terms in (1) are similarly ordered into

powers of e:

= -Ro -,s, (6)
-" eSb + e2Tb (7)

-" -e2Tc - e3V¢ (8)

C.

C_

C_

where the new variables are

(3'- 1) (9)
Ra - (3'-t-1)

2 7 + (3' + 2) cos2 0
So -- (3'+ 1)M_ + (3'+ 1)MI (10)

Sb = 7cos20+(3'--2)
(3' + 1)MI (II)

cos2O [4...4_ (3' + I)]
Tb -- (3"+ 1)MA2 M_ + "---_A2 ' (12)

(3' - 1) cos 2 0
T, -- (3' + 1)MA4 (13)

2 cos 4 0

Vo = (3"+ 1)M?M?, (14)

From these orderings the perturbation equations for

O(e n) can be written in a straightforward manner. The

O(e °) equation just gives an expression for z0, which

can then be substituted into the O(e) equation to alge-

braically solve for zl:

=0 = R. (15)
=1 = S. - &/R. (16)

Combining x0 and zl then gives a solution for X to first
order in e:

(3' -- 1) 2 1 sin s 0

X - (--+--_ + (3'_ I)][_F--_,_ + (3'_ I)M_ ]
(17)

This solution is precisely the same as that obtained by
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Zhuang and Russell [1981, equation 43] through their

analysis with 30 linear equations.
In addition to the more direct route in obtaining the

first-order solution, the advantage of the perturbation
technique is that the solution can be extended to the

next higher order in e without difficulty. The second-

order equation is

3xo(z_ + zorn) - [Ro(z_ + 2zox2) (18)

+2z0zlSo] + (x0Tb + xlSb) -- T_ = 0

Solving this equation, the solution for X to second order
becomes

(7 - 1) 2 1 sin 2 0

X -- _-_-_-g+_--_(_-_+ (7_I)MA_ ] (19)

2sin s0 - 7cos20 1

+(7 :_M] 1(7 - 1)MI + ('r - 21[_

1

+(7 - 1)M_ 1}

Note that the second-order term in (19) disappears if
0 = 90 ° and 7 is taken as 2. This characteristic behav-
ior may have played a role in the conclusion that 7 = 2

which Zhuang and Russell obtained by comparing data
with their first-order theoretical results. Their data set

could well have contained a preponderance of quasi-

perpendicular shocks. Thus the limitations of their

first-order theory may have created an inherent bias in

the data comparison toward an extrapolated value for 7
which minimizes the second-order corrective term, that

is, toward 7 = 2 for cases with 0 --, 90 °. This was very

close to the average value actually determined in their

analysis. Later data analyses [e.g., Farris et al., 1991]

have concluded that the value of 7 is actually closer to

5/3.

In fact, when 0 is close to 900 the foregoing per-

turbation expansion becomes relatively inaccurate be-
cause the contribution of the second-order terms be-

comes small (the 7-2 terms become predominant), and
thus third- and higher-order terms in the perturbation

expansion become important except when both Mach

numbers are >> 1. In this case, however, the solution

can be replaced with a better one. In (1) the coefficient
Cc and two terms in Cb become of third or higher order

in a modified perturbation ordering because the cos 2 0

factor becomes very small (going to 0 at 0 = 90°). By
neglecting these third-or-higher order terms the equa-

tion for X becomes quadratic and is easily solved:

X - -Ca{l+ (20)
2

_/1 - 4[(7 + 7 cos2 0 - 2)/(7 + 1)C_MA2]}

where Ca is just the coefficient given by (2). This so-

lution is accurate to second or higher order for 0 away

from 900 (as far down as 500 - 60°), and collapses to

the solution by Cairns and Grabbe [1994] as 0 --* 90 °.

Taken together, (19) and (20) constitute reasonably
simple analytical relationships derived from MHD the-

ory for the density jump across the bow shock. These

expressions can be easily compared with data. Note
that these two solutions have a clear dependence on

four variables: MA, Ma, 0, and 7, as expected theoret-

ically [Cairns and Grabbe, 1994]. This variable depen-

dence is missing in previous theoretical models for the
bow shock location that use expressions for the den-

sity jump based on gas dynamics. Such models have
previously predominated comparisons with data on the

Earth's bow shock location; the dependence on 4 vari-

ables is only present in the Zhuang-Russell MHD model

and in our recent MHD work [Cairns and Grabbe, 1994;
Cairns and Lyon, 1995; and this paper].

Predictions for X as a function of MA are compared

in Figures 1-5 for the analytical solution from either

(19) or (20), the exact numerical MHD solution, and
the first-order solution of Zhuang and Russell [1981].

It should be noted that Zhuang and Russell derived

their results under the assumptions that MA and M,
are >> 1. Therefore curves of their results for the low

Mach numbers are used here only for the purpose ot

comparison with the predictions of (19) and (20), whose
validity definitely does extend to lower Mach numbers.

In Figures 1-3 the analytic solutions for X as a func-

tion of MA are compared for four angles between the

magnetic field direction and the shock normal (# =

00 , 300 ,600 , 90 °) and for three different sonic Mach num-
bers (M, = 8,4, 2). Figures 1 and 2 span the range ot

M, generally observed in the solar wind at 1 AU [e.g.,

Fairfield, 1971, Figure 3]. Figure 3 is for a value of M,
just below the most extreme cases observed in the solar
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Figure i. Comparison of the density ratio X =
p,_/pb, predicted by the second-order perturbation
MHD solutions (19) and (20) (dashed lines) with the
exact numerical MHD solution (solid lines) and the
Zhuang-Russell solution (dotted lines), as a function oi
Alfven Mach number MA and selected 8 (angle between
the bow shock normal and the IMF) for sonic Mach
number M, - 8. The adiabatic constant 7 = 5/3 is
used in all plots.
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Figure 2. Same as Figure 1 for M, = 4.

wind and is used to test how far the theory extends.

All three figures show that the second-order solutions

(19) and (20) predict the exact numerical results more

accurately than the first-order Zhuang-Russell solution

for all angles except for 0 = 00, where both the new an-

alytical solution and the Zhuang-Russell solution agree

precisely with the exact numerical solution.

Figures 1-3 show that the Zhuang-Russell result for

the low Mach-numbers becomes increasingly inaccurate

as MA decreases for a given 0, and that the their solu-

tion underestimates the exact solution for finite 0. The

Zhuang-Russell solution shows a noticeable error for all

three nonzero angles in each of Figures 1-3. The ana-

lytic solutions contained in (19) and (20) show relatively

small errors at intermediate 0 (300 and 60 °) when MA

goes below 2-3.

Figures 4 and 5 show how these predictions for X

vary with 0. In Figure 4 the value of X given by (19) is

plotted as a function of 0 (ranging from 00 to 70 °) for

Ms = 4 and selected values of MA. These plots show

that the error in the analytic theory becomes significant

at most angles when MA = 2, although they are gener-
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Figure 3. Same as Figure 1 for Ms = 2.
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Figure 4. Comparison of the density ratio X predicted

by (19) with the exact numerical MHD solution and
the Zhang-Russell solution, as a function of 0 ranging

00 - 700 for M, = 4 and selected small values of ]VIA.

ally negligible for higher ]VIA. In all cases (19) is more

accurate the Zhuang-Russell result.

In Figure 5 the value of X given by (20) is plotted as

a function of 0 (ranging from 60* to 90 °) for Ms = 4

and selected values of Ma. Figure 5 shows that (20)

is very accurate (within about 1-2%) for Ma > 1.5 for

the approximate range of 0 = 750 - 900 and only shows

more significant error in the range 0 = 600 -750 for the

case that MA = 1.5. In all cases the first-order result

of Zhang and Russell is less accurate.

3. Analytical Solutions and

Phenomenological Models

Equations (19) and (20), which were derived analyti-

cally from MHD theory, constitute useful analytical so-

lutions that both complement the analysis by Cairns

and Grabbe [1994] and can be easily compared with
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x 0.5 ............................................................................................ '
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e

Figure 5. Comparison of the density ratio X predicted

by (20) with the exact numerical MHD solution and

the Zhang-Russell solution, as a function of 0 ranging

600 - 900 for M, = 4 and selected small values of MA.
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shock crossing data. As discussed in section 1 gasdy-

namic [Seiff, 1962; Spreiter et al., 1966] and MHD simu-

lations for 0 >_ 45 ° [Cairns and Lyon, 1995] show empir-
ically that the standoff distance a, is linearly dependent

on the density jump X. (Note that a, is defined here
as the distance between Earth's center and the shock's

nose; in the aerodynamic literature "standoff distance"

is defined as the distance of the obstacle to the shock,

so an alternative would be to call a, the "geocentric

shock distance.") This section examines and compares
the predictions of models for a,, that are constructed

from MHD and gasdynamic solutions for X combined

with the empirical relationships between as and X, for

parameter ranges that can occur at the Earth's bow
shock.

These empirical relationships between a, and X =

P,_/Pbs take the following form [Seiff, 1962; Spreiter

et al., 1966; Farris and Russell, 1994;Cairns and Lyon,

1995]:

as _ j + kx (21)
amp

Here amp is the distance from Earth to the nose of the

magnet.pause. It should be emphasized that although
the analytical solutions found in section 2 for the density

ratio X apply locally everywhere on the bow shock,
these empirical models are restricted to the subsolar

region (the nose) of the shock. In the more general
ease, as depends on (at least) five parameters: the four

parameters (MA, Ms, O, and 7) that X depends on, as

well as the magnet,pause shape [Spreiter and Stahara,

1980; Slavin et al., 1983].
For the gasdynamic empirical relation found by Seiff

[1962] and further developed by Spreiter et al. [1966]

j = 1 and k = 1.1, where the value ofk depends on the

obstacle shape. This model has been the prevailing one

used for published comparisons with spacecraft data for

many years. Solving the gasdynamic equations for the

density jump X yields

(7 - 1)M, 2 + 2

X,d = (7 -I- I)M_ (22)

The phenomenological model of Formisano et al. [1971]
and Fart, set al. [1991] substituted Mms for M,. See

Cairns and Grabbe [1994] for arguments against this
procedure.

Two alternative empirical models have been devel-

oped recently, principally due to difficulties account-

ing for distant shock locations at low MA and Mms

[Russell and ghang, 1992; Cairns et al., 1995]. In the

model presented by Farris and Russell [1994] the value

for k is modified from the Seiff-Spreiter form at lower

Mach numbers by k : 1.1M2m,/(M2ms- 1) while j stays

1. In the model developed from MHD simulations by

Cairns and Lyon [1995], j = 0.4 and k = 3.4 for quasi-

perpendicular flows with Ms "_ 8 and MA > 1.5. This

model explains their simulation results with excellent

accuracy. Both the alternative models were developed

with the goal of extending the relationship (21) to lower
Mach numbers and exhibit a greater dependence on the

density ratio at these low Mach numbers. It should

be noted that for larger Mach numbers (> 5 - 10),

Ps_/Pbs "" 0.25 and all three empirical models are in

approximate agreement.
A note regarding the importance of O for these em-

pirical models is in order. Cairns and Lyon [1995] point

out that as depends strongly on O, as evidenced by the

qualitatively opposite variations of as with decreasing

MA at fixed Ms for their MHD simulations (valid for

0 >_ 45 °) compared to the field-aligned (0 = 00) MHD

simulations of Spreiter and Rizzi [1974]; that is, as is
predicted to increase with decreasing MA for 8 > 45*

but to decrease with decreasing MA for 0 = 00. The

phenomenological models also predict variations in a,

opposite to the Spreiter-Rizzi field-aligned MHD simu-

lations, and this characteristic also argues against the

validity of the phenomenological models near O = 00.

It is presently unknown how large O must be for mod-

els based on (21) to hold, but the empirical models are
likely relevant for O > 20*. The recent observational

results of Peredo el al. [1995], who find statistically

that as decreases with decreasing MA (> 2) but do not
specify O, make the dependence of as on O particularly

topical.

In Figure 6 comparisons are made between the pre-

dictions for as/amp, based on the Cairns-Lyon empir-

ical values of j and k, for various 0 (00,30*,60*,90 *)
at Ms = 8. The solid line shows the exact numerical
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Figure 6. Comparison between the second-order an-
alytical MHD solution (dashed lines), the numerical
MHD solution (solid lines) and the gasdynamic solu-
tion with a phenomenological substitution of the mag-
net.sonic Math number M, no for the sonic Math num-
ber M, (dotted line). Here 7 = 5/3 and Ms = 8.
The axis on the left-hand side is as�amp predicted for
both models using the empirical relation between X and
as�amp found in Cairns and Lyon's [1994] simulations.
It is expected that this empirical relation is wrong for
the O = 0° case (from the Spreiter and Rizzi [1974] stud-
ies at 0 = 0') so the value of X from which the standoff
distance is determined is shown on the right-hand side.
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Figure 7. Same as Fig. 6 for the case that M, = 4.

MHD solutions, while the dashed line uses the analyt-

ical solutions (19) and (20) for Z. The dotted line

shows the prediction for the phenomenological Mm,

model of Formisano et al. [1971] and Farris and Rus-

sell [1991] (substitute Mm, for M, in (22) and substi-

tute the result into (21)) with the modification j = 0.4

and k = 3.4. Note that Cairns and Lyon [1995] show

that, on the other hand, retaining the Seiff-Spreiter re-

lationship j - 1 and k = 1.1 yields predictions for the

phenomenological model that are widely different from

their MA _< 5 simulation results. Since the empirical

models are not valid for small 0, that is, < 20 o (see pre-

vious paragraph), a scale corresponding to X is given

on the right-hand side.

Similar comparisons are made in Figure 7 for M, = 4.

As expected from Figures 1-3 the predictions from (19)

and (20) differ from the exact MHD results only for

MA _ 2 -- 3 at intermediate _ (300 and 60 °) but agree

very well down to MA = 1.5 at 0 ----0 ° and 90 °. Predic-

tions based on the phenomenological model, however,

show much larger deviations from the exact MHD solu-

tion at 8 = 0 ° and 8 -- 90 °. For the intermediate angles

the phenomenological Mm, model exhibits more mod-

est deviations from the numerical MIlD solutions but

still generally show larger differences than the analytic

solutions do. As 8 increases toward 90 °, the predictions

of the phenomenological model are initially larger but

eventually smaller than the MIlD results for all MA.

These differences appear suitable for experimental test-

ing.

For the case O = 0 °, where both the analytic solution

and the earlier Zhuang-Russell solution agree precisely

with the exact MtID solution, Figures 6 and 7 show that

the magnetosonic phenomenological model (replace M,

in (22) by Mm,) exhibits a greater than 25% over-

shoot of the MHD solution for X at MA = 2. Thus

the phenomenological model exhibits a dramatic fail-

ure at low 0, as was pointed out by Cairns and Grabbe

[1994, Figure 5]. Note ironically that the size of this

error increases as M, increases. The phenomenological

"Alfven" model (substitute MA in (22) for M,), which

was sometimes compared with data in the 1970s [e.g.,

Fairfield, 1971; Formisano et al., 1971], corresponds to

the magnetosonie form at O = 00 extended to model all

0. Note again that the predicted as scale is not reliable

for any of the models at 0 = 00 since the empirical rela-

tion (21) breaks down there. While combining the MIlD

expression for X with the empirical relation (21) leads

to the MHD models predicting standoff distances that

are independent of MA, the work by Spreiter and Rizzi

[1974] for 0 = 0 ° predicts that a, actually decreases

with decreasing MA; the behavior found by Spreiter

and Rizzi is exactly opposite to that predicted for the

magnetosonic and Alfven phenomenological models.

For the case 0 = 30 °, the phenomenological model

exhibits a smaller error than at 0 = 0 °. It reaches a

maximum overshoot of almost 10% at around MA = 3

for the M, = 8 case in Figure 6, but this maximum

falls dramatically as M, decreases in Figure 7. The

analytic solution is much more accurate, and only shows

> 1% deviation as MA becomes close to 2. For the case

0 = 60 °, the phenomenological model exhibits a few

percent undershoot. The analytic model is very close to

the exact numerical solution for MA > 3 but exhibits a

smaller overshoot at MA < 3.

For the 0 = 900 case the analytic solution is equal to

the exact solution, but the magnetosonic model exhibits

a sizeable error. While the error in the phenomenologi-

cal model is only a few percent in Figures 6 and 7, there

is no error in the analytic model for 0 = 900 and almost

none for 0 close to 90 °. Thus even though one can argue

that the magnetosonic model is a reasonably good ap-

proximation near 0 -- 90 °, the analytic MHD solution

is clearly preferable because it is a much more accurate

model and because it is based on MHD plasma theory

rather than phenomenology.
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the second-order an-

alytical MHD solution (dashed lines), the numerical

MIlD solution (solid lines) and new phenomenological

model of Farris and Russell [1994] (dotted line) using

different empirical models. Here 7 = 5/3 and M, = 8.

The axis on the left-hand side is the predicted ratio

aj/amp.
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Figure 9. Same as Figure 8 for M, = 4.

In Figs. 8 and 9 comparisons of the MHD analyti-

cal solutions are made with the new phenomenological

model of Farris and Russell [1994] for 8 = 0o ,30 °, 60 °,

and 90 °, for MA = 8 and MA = 4, respectively. Once

again the analytical and numerical MHD solutions for

X are combined with Cairns and Lyon's [1995] empir-

ical relation to predict a,/amp. No modifications are

made to the Farris and Russell model since it is in-

tended to account for shock locations at low MA and

M,,_, without change. It is obvious that the two models

make very differentpredictions for all 0 and MA < 10.

These differences are clearly amenable for observational

testing. It should be noted that in general the rela-

tive differences between the MHD model and the phe-

nomenological model are sizeably larger for MA >_ 1.5

at # = 300 , 600 and 90 ° than they were in Figures

6 and 7 (whichhave identicalj and k in (22)).The
predictions of the Farris and Russell model generally

undershoots those of the MHD model. The increased

difference between Figures 6 and 7 and Figures 8 and 9

indicate a major discrepancy between the predictions of

the MHD model and the phenomenological model. Fig-

ure 9 indicates that the discrepancy increases in size as

M, gets smaller, and that the two models now almost

never agree for all O.

except when 0 is very close to 900 while M, or MA is

relatively small. For # _ 900 the solution (20) much

more accurately predicts the value for the density ratio.

This second solution is quasi-perpendicular in nature

and is generally also of second order in perturbation, of

higher order as 0 approaches 90 °, and becomes exact at
0 = 90 °.

Taken together, (19) and (20) constitute reasonably

simple analytical relationships derived from MHD the-

ory for the density jump across the bow shock. When

combined with appropriate models at the subsolar re-

gion (bow shock nose) for the relation between X and

the bow shock's standoff ratio a,/amp, they can be eas-

ily used for comparison with data. Two recent em-

pirical models were used for comparisons and definite

differences were found in their predictions. Equations

(19) and (20) more accurately describe exact theoreti-

cal MHD results than the phenomenological models for

X that have been used (in conjunction with the Seiff-

Spreiter empirical model) for comparison with space-

craft data for many years. Those two equations, when

combined with the most appropriate empirical model,

constitute decidedly better replacements to use for that

purpose.

A goal for future research in this ares is to use MHD

theory to develop a fully analytic model for the re-

lationship between X and a,/amp to replace the em-

pirical models. Only when that is accomplished will

a completely theoretical MHD model be available to

predict the bow shock's location. Developing a full

MHD description for the solar wind flow at the Earth's

bow shock, which will require a self-consistent three-

dimensional determination of the shock location, shape,

and jump conditions as a function of MA, M,, 7, and

0, should then be possible.
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